

Estimation-Action-Reflection:

Towards Deep Interaction Between Conversational and Recommender Systems

Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, Min-Yen Kan, Tat-Seng Chua {wengianglei, xiangnanhe, miaoyisong}@gmail.com, qw2ky@virginia.edu, hongrc@hfut.edu.cn, {kanmy,chuats}@comp.nus.edu.sg

Introduction to Conversational Recommender System (CRS)

Multi-round CRS scenario

Motivation

	Ask Attribute	Focus on Strategy	Multi-Round	Unify CC and RC*
Bandit	×	X	\checkmark	X
CRM(SIGIR'18)	\checkmark	\checkmark	×	×
Q&R(KDD'18)	\checkmark	×	×	X
EAR	\checkmark	\checkmark	\checkmark	\checkmark

Experiment Setup

	#users	#items	#interaction	#attributes	type of attributes
Yelp	27,675	70,311	1,368,606	590	Enumerated*

Stage 1: Estimation We collect data from CC to train RC

Attribute-aware BPR for Item Prediction

Attribute Preference Prediction

Two types of negative samples for BPR:

- D1: Randomly sampled
- D2: Sampled from candidate items
- u: user, v: item, Pu: Known attributes.

BPR for paired attributes:

LastFM	1,801	7,432	76,693	33	Binary*
--------	-------	-------	--------	----	---------

Enumerated Question: Wine: {Red Wine, White Wine, Whiskey}, Binary Question: Classic, Pop, Rock ...

Main Experiment Result

Success Rate* indicates the performance difference between models against strongest baseline, CRM

Stage 1		Las	tFM	Y	Yelp	
Subjetion motrice		Item	Attribut	te Item	Attribute	
evaluation metric:	FM	0.521	0.727	0.834	0.654	
AUC score	FM+A	0.724	0.629	0.866	0.638	
	FM+A+MT	0.742*	0.742* 0.760*		0.896*	
		Yelp		LastFM		
	SR@	5 SR@10 SR@	15 AT S	SR@5 SR@10 SR	@15 AT	

$$L_{attr} = \sum_{(u,p,p')\in\mathcal{D}_3} -\ln\sigma\left(\widehat{g}(p|u,\mathcal{P}_u) - \widehat{g}(p'|u,\mathcal{P}_u)\right) + \lambda_{\Theta} \|\Theta\|^2$$
$$\widehat{g}(p|u,\mathcal{P}_u) = \mathbf{u}^T \mathbf{p} + \sum_{p_i\in\mathcal{P}_u} \mathbf{p}^T \mathbf{p}_i$$

 $L = L_{item} + L_{attr}$

- p: ground truth attributes in this session
- p': sampled negative attributes

Jointly Optimise two tasks

Stage 2: <u>Action</u> We leverage statistics from RC to decide CC's strategy

• Reinforcement learning: Policy Gradient to find best strategy. Action space: |P| + 1

State vector components	Meaning	Source
Sentropy	Encode the entropy of each attribute	RC
S preference	Encode estimated preference of each attribute	RC
Shistory	Encode the conversation history	CC
Slenath	Encode the candidate item list length	RC

Stage 2 & 3 Evaluation metric: Success Rate @ t Average Turn of Conversation

-s _{ent}	0.614	. 0.	895	0.969	4.81	0	0.051	0.190	0.346	12.82
-s _{pre}	0.596	0.	857	0.959	5.06	0	0.024	0.231	0.407	12.55
-s _{his}	0.624	. 0.	894	0.949	4.79	0	0.021	0.236	0.424	12.50
-s _{len}	0.550	0.0	846	0.952	5.44	0	0.013	0.230	0.416	12.56
EAR	0.62	9* 0 .	907*	0.971*	4.71 *	0	0.020	0.243*	0.429*	12.45*
Yelp							Las	tFM		
	SR@5 SR@10 SR@15 AT					SR@5	SR@10) SR@1	5 AT	
-updat	- update 0.629 0.905 0.970 4.72			0.020	0.217	0.393	12.67			
FAD		(00	0.007	0.07	1 1 71		0.020	0 9/2*	0 4 2 0 *	* 19.45*

Conclusion

- We formulate CRS in a multi-round scenario and propose EAR, towards the deep interaction between CC and RC.
- Our FM+A+MT has the best performance on Estimation stage for item prediction and attribute prediction. The Action is bettered by statistics from CC. The reflection stage is especially useful when offline AUC is lower.

Stage 3: <u>Reflection</u>

We leverage information from CC to adjust RC's estimation towards user presence

Rejected items as negative samples

$$L_{ref} = \sum_{(u,v,v')\in\mathcal{D}_4} -\ln\sigma\left(\widehat{y}(u,v,\mathcal{P}_u) - \widehat{y}(u,v',\mathcal{P}_u)\right) + \lambda_{\Theta} \|\Theta\|^2$$

Two types of negative samples for BPR:

- v: original positive sample
- v': recently rejected items